
J .  Fluid Mech. (1978), wol. 88, part 2 ,  p p .  309-321 

Printed in Great Britain 
309 

On solutions of the boundary-layer equations 
with algebraic decay 

By J. H. MERKIN 
Department of Applied Mathematical Studies, University of Leeds, England 
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The boundary-layer equations are solved numerically for mainstreams 

V ( x )  = x(1 - - x ~ ) - ~  and U ( x )  = (1 

which are both O( (1  - x)-a) near x = 1 .  Series expansions are derived near x = 1. For 
a > 1, where, for the similarity solution a t  x = 1 ,  the outer boundary condition is 
approached through exponentially small terms, a straightforward expansion in 
powers of 1 - x is possible. For 0 < a < 1,  where the decay is only algebraic (Brown 
& Stewartson 1965), the outer boundary condition cannot be satisfied even with 
algebraic decay by the higher-order terms in the series and this must be regarded as 
only an inner expansion. An outer expansion is required which matches with this inner 
expansion and which approaches the outer ,boundary condition with exponential 
decay. For a = 1 ,  the decay is exponential, but not of the same form as for a > 1 ,  and 
again the outer boundary condition cannot be attained by the higher-order terms in 
the series. An outer expansion for this case is also derived. 

1. Introduction 
In his work on the viscous incompressible flow in a cone, Ackerberg (1965) found, 

when considering the flow for small viscosity, that near the apex the solution for the 
boundary layer on the wall of the cone approached the outer core flow through 
algebraically small terms and not through the usual exponentially small terms. He 
then argued that, since this asymptotic behaviour wa.s unacceptable, this cow flow 
would not be the potential sink as originally suggested, but that  near the apex there 
would be a vortex motion with closed streamlines which the inner boundary-layer 
solution could then approach with an exponentially small error. This problem was 
considered in more detail by Goldstein (1965)' who obtained similarity solutions of the 
boundary-layer equations for (non-dimensional) mainstreams V ( x )  of the form 
U ( x )  = ( 1  - x)-~, where x measures distance along the wall. Ackerberg's case corre- 
sponds to a = $. He showed that there could be solutions with exponential decay for 
01 b 1, solutions with algebraic decay for 0 < a < 1 and no solutions for a < 0. He 
concluded that the solutions with algebraic decay were unacceptable in the context of 
the usual boundary-layer theory as they could not be matched with the outer expan- 
sion over a finite part of the x axis. 

Brown & Stewartson (1965) pointed out that  solutions of the boundary-layer 
equations with algebraic decay could be allowed and would not contradict Goldstein's 
argument provided that they held only a t  singular points of the equations and not 
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over a finite range of x. They showed that this type of similarity solution could be a 
limit of a solution of the full boundary-layer equations as x -+ 1 but that, in this case, 
this limit would not commute with the limit y + co, where y measures distance normal 
to  the wall in the usual boundary-layer variables. A non-commutative limit of this 
type has also been reported by Buckmaster (1  969) in his work on the flow at  the rear 
Gf a cylinder when separation has been completely suppressed by magnetohydro- 
dynamical effects. 

This paper extends the work of Brown & Stewartson (1965) in two ways. First, 
a numerical solution of the boundary-layer equations is obtained for mainstreams 
which are O( (1 - z)-") near x = 1 .  This confirms their result that, for all the values of 
a considered, the full solution does have the form given by the similarity solution a t  
x = 1.  They used a Gortler (1957) expansion from x = 0 and had to limit their attention 
to  a mainstream for which the expansion is thought to be convergent. However, the 
numerical solution does not require this and the mainstreams considered here are 
U(x) = z( 1 - x2)-a (the one treated by Brown & Stewartson) and U(x) = ( 1  - x)-" (for 
which the Gortler series is thought not to  converge as far as x = 1 ) .  

Second, a series expansion for the solution near x = 1 is derived and it is found that 
there are three cases to consider. For a > 1 the limits x --f 1 and y -+ co commute, there 
is a stmightforward expansion in powers of 1 - x, the leading term being the similarity 
solution as derived by Goldstein (1965), and all the terms in the expansion approach 
their mainstream values with exponential decay. For 0 < a < 1 the situation is more 
complicated. Here the limits x -+ 1 and y + co do not commute and, as expected, when 
a straightforward expansion is tried with the similarity solution as the leading term, 
which now has only algebraic decay, this breaks down. It is found that the term 
O((1- x)") in the expansion is O(77(2n-4a)'(1--a)) for large 7, where 

77 = (HA,)fy/(I-x)g(l+a), A ,  = Iim(I-x)aU(x), 
x-1 

is the similarity variable used by Goldstein, so for n z 2a the outer boundary condition 
cannot be satisfied a t  all. To resolve this difficulty an outer expansion is required which 
uses T = ($A,)*y/(l -x)" as the independent variable. This choice of variable is 
suggested by the work of Brown & Stewartson, who showed that, for large y, the 
streamwise velocity component u is of the form 

a - U(x)+A(x,y)exp(-y2/2F(x)), ( 1 )  

where 

and 

for some constants /3 and m. When U(x) is 0(( 1 - x)-") near z = I ,  F(x) is O( (1 - x)2") 
for 0 < a < 1, whereas, for a > 1,  F(x) is 0(( 1 -x)l+") so the similarity variable 77 is 
recovered. 

It is found that each term in the inner expansion contributes to the leading term in 
the outer expansion so it is not possible to determine it completely. However, an 
expansion can be found which matches with the inner solution and has the exponential 
deoay given by ( 1 )  for large y. This contributing to the leading term in an outer 
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expansion by each term in an inner expansion is not unknown in boundary-layer 
theory. It appears, for example, in the Goldstein-Stewartson theory of separation 
(Stewartson 1970). 

Finally, there remains the case a = 1. Here the similarity solution has exponential 
decay but of the form exp [ - 28y/( 1 - x ) ] .  Thus the limits x -+ 1 and y --f 00 do not 
commute and an expansion in powers of 1 - x breaks down a t  the term O( ( 1  - x ) ~ ) ,  again 
because it is not possible to  satisfy the outer boundary condition a t  this stage. An outer 
expansion is then required in which 5 = y/( 1 - x) [ - log (1 - x)]g is used as the inde- 
pendent variable. This choice of variable comes from (i), for, with a = 1,  F ( x )  is 
O( - (1 - x)21og (1 - x ) )  near x = 1. This fact was not commented on by Brown & 
Stewartson. I n  this case it is possible to  determine the leading term in the outer 
solution completely and this has the exponential decay given by (1). 

2. Numerical solution 

an incompressible fluid with mainstream U ( x )  are, in non-dimensional form, 
The equations describing the two-dimensional steady flow in the boundary layer of 

au av 
ax ay 
-+- = 0, 

au au du a2u 

ax ay ax ay2' 
u- +v-  = u- +- (3) 

where x and y are measured along and perpendicular to the wall respectively and u and 
v are the corresponding velocity components. The boundary conditions are 

u = v = O  on y =  0; u - t U ( x )  as y-tco. (4) 

Two forms of the mainstream U ( x )  are considered, namely V ( x )  = x( 1 - x2)-a and 

Equations (2) and (3) were solved numerically using essentially the same method as 
has been described by the author elsewhere (Merkin 1972). To do this the equations 
had first to be transformed into a more appropriate form. For U(z)  = x( 1 - x2)-" the 
transformation used was to write the stream function @ (defined from ( 2 )  in the usual 
way) as 

x F ( x , y )  in 0 < x < &, 

U(X) = (1 - x)-". 

@ =  (( 2f;)S( l -a) j ([ ,~)  in < x < 1, 

where f ;  = 1 -x and 7 = y/(25)4(1+") as suggested by the similarity solution a t  x = 1. 
The values of the velocity components calculated a t  x = $ in the first part of the 
integration were used as starting values for the second part of the calculation. For 
U ( x )  = (1 - x)-a a transformation was used which enabled the integration to proceed 
from x = 0 to  x = 1 without changing the form of the equations and which had the 
appropriate similarity form at  x = 0 and x = 1 .  This was achieved by putting 
@ = (2x)g (1 - ~ ) b ( l - ~ ) G ( x ,  q ) ,  where ?j = y / (2x)h  (1 - x)h(l+"). 

The method involves differencing the x derivatives and averaging all the other terms 
over the step from x to x + Ax. This results in a nonlinear ordinary differential equation 
which is then written in terms of finite differences, the resulting nonlinear algebraic 
equations being solved iteratively by the Newton-Raphson method. A value of 
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X 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.92 
0.94 
0.96 
0.98 
1 .oo 

Similarity solution 

a = *  
0.86600 
0.91039 
0.94990 
0.98488 
1.01565 
1.04145 
1.06546 
1.08480 
1.10045 
1.10564 
1.11018 
1.11402 
1.1 1704 
1.11887 

1.11887 

a = +  
0.96472 
1.01372 
1.05837 
1.09924 
1.13682 
1.1 7152 
1.20370 
1.23366 
1.26163 
1.27231 
1.28271 
1.29284 
1.30268 
1.31220 

1.31220 

a = l  

1.18972 
1.24545 
1.297 13 
1.34554 
1.39 13 1 
1.43495 
1-47686 
1.51737 
1.55676 
1.57225 
1-58761 
1.60285 
1.61797 
1.63299 

1.63299 

TABLE 1. Values of S for mainstream U(x)  = x(1 - x 2 ) - a .  

a = #  
1.60873 
1.66626 
1.71856 
1.i6655 
1,81093 
1.852 19 
1.89071 
1.92676 
1.96053 
1.97343 
1.98600 
1.99825 
2.0 10 17 
2.02179 

2.02179 

X 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0- 9 
0.92 
0.94 
0.96 
0.98 
1,oo 

Similarity 
solution 

a = +  

1.54804 
1.13831 
0.96441 
0.86497 
0.79983 
0.75366 
0.71920 
0.69247 
0.67103 
0.66721 
0.66350 
0.65987 
0.65625 
0.65228 

0.65228 

a = +  

1.63673 
1.25973 
1.10892 
1.02758 
0.97751 
0.94436 
0.92 148 
0.90541 
0.89420 
0.89244 
0.89084 
0.88939 
0.888 12 
0.88707 

0.88707 

a = +  

1.74356 
1-40172 
1.27378 
1.20923 
1.17219 
1.14952 
1.13529 
1.12640 
1.12 120 
1.12050 
1.1 1992 
1.11944 
1.11910 
1.11887 

1.11887 

a = $  

1.84637 
1.5348 1 
1.42521 
1.37323 
1.34533 
1.32955 
1.32046 
1.3 1547 
1.3 1300 
1.31270 
1.31249 
1.31235 
1.31225 
1.31220 

1.31220 

TABLE 2. Values of S for mainstream U ( z )  = (1 

a = l  

2.04171 
1.77977 
1.69790 
1.66330 
1.64704 
1.63910 
1.63532 
1.63365 
1.63310 
1.63306 
1.63303 
1.63301 
1.63300 
1.63299 

1.63299 

- 2) -a. 

a = )  

2.31352 
2.10797 
2.053 18 
2.02271 
2.026 15 
2.02323 
2.02219 
2.02187 
2.02180 
2.02180 
2.02 17 9 
2.02179 
2.02179 
2.02179 

2-02 179 

Ax = 0.01 was used throughout and two integrations were done in each case, the step 
length h in the transverse direction taking the values h = 0.05 and h = 0.025. Then 
Richardson's h2-extrapolation formula (Smith 1965, p. 140) was used to improve the 
accuracy of the results. However for a = Q the outer boundary condition had to be 
applied too far from the wall for these values of h and to keep computing time within 
bounds values of h = 0.1 and h = 0.05 had to be used. 

From the numerical solution we can calculate the skin friction ( 8~/8y)~=,, and, for 
comparison with the similarity solution at x = 1, values of 

are given in tables 1 and 2 for various a for U (2) = x( 1 - x ~ ) - ~  and U(x) = ( 1  - x)-" 
respectively. Here 

A ,  = lim(l--x)aU(x). 
X-+ 1 
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7 
1 
2 
3 
4 
5 
6 
8 

10 
12 
15 
20 
25 
30 
35 
40 
45 
50 

x = 0.9 

0.5175 
0.7531 
0.8904 
0.9477 
0.9773 
0.9912 
0.9991 
1 0000 

TABLE 3. 

x = 0.99 

0.4945 
0.7161 
0.8218 
0.8790 
0.9192 
0-9370 
0.9655 
0.98 13 
0.9903 
0.9967 
0.9996 
1~0000 

x = 0.995 

0.4935 
0.7138 
0.8181 
0.8739 
0.9074 
0.933 1 
0.9588 
0.9740 
0.9837 
0.9923 
0.9980 
0.0006 
0.9999 
1~0000 

x = 0.9975 

0.4929 
0.7126 
0.8160 
0.8701 
0.9087 
0.9251 
0.951 1 
0.9664 
0.9765 
0.9863 
0.9946 
0.9981 
0.9994 
0.9998 
0.9999 
1~0000 

x = l  

0.4922 
0.71 11 
0.8136 
0.8676 
0.8990 
0,9192 
0.9430 
0.9563 
0.9647 
0.9726 
0.9802 
0.9838 
0.9873 
0.9893 
0.9907 
0.9919 
0.9955 

From these tables it is seen that the values of S calculated by the numerical integration 
of the full equations agree with those from the similarity solution (these were found 
by a 'shooting' technique, the equations being integrated by a Runge-Kutta method) 
to within the accuracy of the numerical scheme. Velocity profiles from the numerical 
integration were also compared with the respective similarity solution and were found 
to  be in agreement within the expected accuracy of the two methods. 

is sufficiently rapid [0(7-8)] for it to  be difficult to 
detect the change from exponential to algebraic decay in the numerical solution for 
this value of a. However, for a = 5 this change is far more apparent, the decay now 
being O(T, -~) ,  and table 3 gives the values of af/ar (where u = (1 - x)-" af/aq) calculated 
for the mainstream U ( x )  = (1 -x)-a by a numerical scheme which used the same 
method as was used for U ( x )  = x ( l  -x2)-a, i.e. the transformation was changed at  
x = 3 from Blasius variables to  those appropriate to  the similarity solution a t  x = 1 
and a much smaller value of Ax was used near x = 1, so that  velocity profiles could be 
compared a t  the same value of 7. The values a t  x = 1 are those calculated by the 
numerical integration and agree with those from the similarity solution. 

The algebraic decay for a = 

3. Expansion near x = 1 

Near x = 1, U ( x )  N A,( 1 - x)-" and, following Goldstein (1965), we write 

where c = 1 - x and 71 = (+A,)* y/@'+a). Equations (2) and (3) become 

with boundary conditions f = af/aq = 0 on 7 = 0 and a f /ar  --f U ( [ ) P / A ,  as 7 --f 00. 

Taking U ( 5 )  = ( A , / P )  (1  +A,5+A2<2+ ...) as the expansion for U ( [ ) ,  we expand 

(6) 
f ( L r )  as 

f (577) =fo(7)+Alcf~(T)+c2(A2f2(7)  +A?f,,(?l))+ ... . 



314 J .  H .  Merkin 

71 f; f; f; f;, 
0 0~0000 0~0000 0~0000 0~0000 
0.1 0.1873 0-2093 0.1337 0.021 2 
0.2 0.3456 0.3804 0.2483 0.0334 
0.3 0.4773 0.5176 0.3459 0.0383 
0.4 0.5854 0.6257 0.4287 0.0382 
0.5 0.6732 0.7098 0.4992 0.0349 
0.6 0.7437 0.7748 0.5597 0.0298 
0.7 0.8000 0,8247 0.6 120 0.0240 
0.8 0.8446 0.8630 0.6577 0.0183 
0.9 0.8798 0.8923 0.6979 0.0129 
1.0 0.9073 0,9148 0.7337 0.0082 
1.2 0.9455 0.9457 0.7941 0.0009 
1.4 0.983 0.9645 0.8427 - 0.0036 
1.6 0.9818 0.9765 0.8817 - 0'0062 
1.8 0.9897 0.9843 0-9126 - 0.0073 
2.0 0.9942 0.9895 0.9366 - 0.0074 
2.5 0.9957 0.9963 0-9740 - 0.0055 
3.0 0.9997 0.9988 0.9908 - 0.0031 
3-5 0-9999 0.9996 0-9975 - 0.0013 
4.0 1 .oooo 1~0000 1-0000 - 0~0000 

TABLE 4. j i ,  f;, fi and for a = Q .  

The resulting equations are (dashes denoting differentiation with respect to 7)  

f'ii + (a - l)f,fO" + 241 -fp) = 0, (7)  

f~+(a-l)fof~+2(2a-n)(1-f~f~)+(a-l-2n)f~f, = 0 for n =  1)2 ). . .  ( 8 )  

f[i + (a- l)fof;i-4(a- l)fhfii -I- (a- 5)f;f21 = (3  -a)fif'; -2(a- 1 )  (1 -fi2), (9) 
and 

with boundary conditionsf,(O) = f k ( O )  = 0 (n = 0,1,2, ...) and 

. f A +  1, f i l - + O  as 7 - t ~ .  (10) 

However (1 0) will have to be relaxed for a in the range 0 < a < 1. 

large 7) 

Equation ( 7 )  is the similarity solution derived by Goldstein, who showed that, for 

1 +BoY-(5a-l)l(a-1)exp[-a(a- 1) Y2]  for a > 1,  

1 + B, Y-44(14 for a < 1, 
where Y = 7 - So and So = lim 7 -fo(7). For a = 1 ) ( 7 )  has the solution 

fh- [ 
?+== 

f h  = 3 tanh2 (7 +p)  - 2, p = tanh-l($)3 (11) 

(Schlichting 1960, p. 144). 

3.1. The case a > 1 

In  this case Brown & Stewartson (1 965) found that the limits 5 + 0 and y -+ co com- 
mute. Solutions to (8) and (9) can be found which each satisfy (10) with an exponentially 
small error. For a = $ it was found that 

f ; ( O )  = 2.2909, f i ( 0 )  = 1.4362 and &(O) = 0-2612, 

and values off i, f 1 and f L1 are given in table 4. 
The expansion near 5 = 0 is an asymptotic expansion of the type discussed by 
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FIGURE 1. Eigensolutions .fi1,fiB and fA8 for a = 8 .  

Stewartson (1957) and we therefore expect (6) to be modified by the inclusion of 
eigensolutions of the form <nf,(r), for certain discrete values of n. The equation for f, is 

f + (a - 1) f& - Z(2a - n) f h  f A + (a - 1 - 2n) fi f, = 0, (12) 

with f,(O) = f A(0) = 0 and f -+ 0 as 7 3 00. Equation (12) has a solution of the form 
f, = L, fa + M, fb for some constants L, and M,, where 

f ;  N Y2(2a-n,l(a-1) j’i Y-(5a-1-2n)/(n-1) exp[-$Y2(a- l)]. 

In  general L, + 0 and the solution is algebraic, but, for certain values of n, L, = 0 and 
the solution will then be exponentially small. A numerical integration of (12) gives, for 
a = $, the first three eigenvalues as n1 = 3.5301, n2 = 4.0347 and n3 = 4.5210 with 
corresponding eigensolutions f,,, f,, and f,,. Graphs of f A,, f & and f (normalized 
such that f i i ( 0 )  = 1) are given in figure 1. It can be shown, using an argument similar 
to that described by Ackerberg (1970), that the eigenvalues are real and positive. 

3.2. The case 0 < a < 1 

Here the limits < -+ 0 and y -+ 00 do not commute so we do not expect the solution 
near 6 = 0 t o  be described fully by (6).  We find that this is the case, since when we 
attempt to solve the equations for the higher-order terms in the expansion we cannot 
satisfy (10) even with algebraic decay. To see this consider the behaviour of the 
equation O ( p )  for large 7. On neglecting smaller-order terms this is 

fz + (a - 1) Y f l -  2(2a - n) f A = 0. (13) 
Equation (13) has a solution in terms of confluent hypergeometric functions which are 
O( Y(5a-2n-1)l(1--a)e~p [$( 1 - a) YZ]) and O( Y-2(2a-n)l(1-a)) respectively a t  infinity. The full 
equation for the term 0(tn) contains a forcing term involving the previous terms in the 
expansion and we attempt to construct a numerical solution by first finding a particular 
integral (bu with (bZ(0) = 0, say, and then finding a complementary function (b, with 
(b:(O) = 1, say. The full solution f ,  will then be given by f,& = (b,+h(b,, where the 
constant h should be chosen so as to  satisfy (10). However 

for some constants K ,  and L,, which means that we must take h = - K,/L,, but for 
n 2 2a, f A is still algebraically large, O( Y2(n-2a)l(1-a)), a t  infinity and the outer boundary 

f A  ,., ( K ,  + AL,) Y(5a-2n-lM1-a) exp [6(1 -a) 3-1 
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1 .o 

0.8 

0.6 

0.4 

0.2 

0 

10-1 

FIGURE 3. Eigensolutionsfi,, fi2 and f;, for a = %. 

condition cannot be satisfied. The breakdown of an expansion in this way when the 
leading term is algebraic has also been reported by Ackerberg (1970). 

Equations (8) and (9) are now solved with the outer condition that the solution 
should not be exponentially large. For a = 6 it is found that 

f ; ( O )  = 0-6956, f i ( 0 )  = 0.3693 and &(O)  = 0.1766. 

Graphs of f 6 ,  fi, f ;  and f &  are given in figure 2. 
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Again we expect eigensolutions to  appear in the expansion. These will be solutions of 
(12) which satisfy the relaxed outer condition. For a = $ we find that the first three 
eigenvalues are n, = 1.5274, n2 = 1.8552 and n3 = 2.1828. Graphs of the corresponding 
eigenfunctions f A l ,  f& and f A 3  (normalized such that f i i ( 0 )  = 1 )  are given in figure 3. 

As a straightforward expansion (6) cannot be constructed so as to  satisfy the outer 
boundary condition it must be regarded as only an inner expansion. An outer expansion 
is then needed which approaches the mainstream with exponentially small error and 
which matches with the inner expansion. To do this we need to  know the behaviour of 
the terms in (6) for large 7. These asymptotic expansions contain the constant do, which 
can be eliminated by a change in origin. As this greatly simplifies the discussion we 
shall assume it to have been done. We find that 

fA N An +Bnhn(q) +Hn(7) ,  (14) 

where A, is the coefficient of En in the expansion of U(E) ,  B, is a known constant and 
H, contains terms of lower order than h,, where 

(2a-n) (3a- -Zn+ l ) ( a + l  -n)(a+3-2n) 1 ?+ ...) (15 )  
2( 1 - a)6 

+ 
and where, to  lowest order, 

Ho 

4 -  

H2 

(the asymptotic form for f L l  has been absorbed into that for f ; ) .  The eigensolutions are 
the same but with A, = 0 and B, indeterminate. The special cases a = 1 and a = Q 
can be treated in a similar way, but now H,, H, and H2 contain terms in log 7. 

The form for u a t  the outer edge of the inner region is then 

The summation is over all integers and eigenvalues. The independent variable for the 
outer region suggested by the work of Brown & Stewartson is 7 = ( $Ao)$ y / p ,  and (1 6) 
suggests writing $ = U ( t )  y-t (2A0)1 t2"F(&, 7). Equation (3)  then becomes 

P F  
a73 

)] = 0. ( 1 7 )  
aF a2F aF a2F +t at a+ a~ at& 
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The outer boundary condition is that aF/& -+ 0 exponentially as 7 -+ 00 and the inner 
condition is found by writing (16 )  in terms of the outer variable 7.  This leads to an 
expansion for F ( ~ , T )  of the form 

F(6,7)  = F0(7) + t1-"F1(7) + [2(1--a)F2(7) + . . . + t2"G1(7) + [G2(7) + . . . (18 )  

(the order of the terms in (18) depends on the particular value of a). Equation (17 )  
then gives 

(where dashes denote differentiation with respect to 7 ) .  We see that F0(7) cannot be 
determined from (17 )  and as 

we see that each term in the inner expansion contributes to the leading term in the 
outer expansion. However, we do know from (23 )  that the behaviour of F,(T) for small 
7 is 

while its behaviour for large 7 can be found from (I) ,  which gives 

For V ( x )  = x ( 1  -x2)-", m = - 3,  A ,  = 2-" and /3 = - 3.67, while, for V(z) = (1 -x)-a, 
m = - 1, A ,  = 1 and P = -0.468 (Jones & Watson 1963, p. 224) .  For a = 3 the 
numerical integration gives B, = - 2.65 and B, = - 0.55, so that 

for small 7.  

It can also be checked that the forms for small 7 of the higher-order terms F,, F,, G ,  
and G, in (17 )  given by the matching requirement are consistent with ( i9) ,  (20 ) ,  (21 )  
and ( 2 2 )  respectively. The special cases a = + and a = 2 can be treated in a similar way. 
Here ( 1  7) has to be modified to include terms O(@ log<) and O@ log t)  respectively. 

FA N - 2.657-'( 1 + 0 . 2 1 ~ ~  + . . .) 

3.3.  The case a = 1 

In this case f, is given by (1 i) ,  so though the outer boundary condition is attained with 
exponentially small error it is not of the same form as ( 1 )  and the limits < -+ 0 and 
y -+ 00 do not commute in this case either. No trouble is encountered in solving for fl. 
It is found that fI(0) = 1.4984 and values of f h  and f; are given in table 5 .  Again the 
outer boundary condition is attained with exponentially small error. When we come 
to consider the term O(C2) the expansion breaks down, again because the outer boundary 
condition cannot be satisfied. The equation for f 2 ,  the term O(f;,)), is 

f: - 4 f ; f 2  = 2Af f l f ; ' ,  (24 ) 
with f,(O) = fL(0) = 0 and f; -+ A ,  as 11 3 co. In  general, for any numerical integration 

f ; N Car + D, + exponentially small terms, of (241, 
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9 f,' f; f$; 
0 0~0000 0~0000 0~0000 
0.2 0.2872 0.2605 - 0.0760 
0.4 0.5016 0.4504 - 0'1512 
0.6 0.6561 0.5854 - 0.2244 
0.8 0.7649 0.6815 - 0.2955 
1.0 0.8403 0.7509 - 0.3645 
1.2 0.8920 0.8023 - 0'4316 
1.4 0.9272 0.8415 - 0.4963 
1.6 0.9510 0.8722 - 0.5584 
1.8 0.967 1 0.8966 - 0.6171 
2.0 0.9779 0.9164 - 0.6719 
2.2 0.9852 0.9325 - 0.7224 
2.4 0.9900 0.9457 - 0.7681 
2-6 0.9933 0.9564 - 0.8089 
2.8 0.9955 0.9652 - 0.8449 
3.0 0.9970 0.9723 - 0'8762 
3.5 0.9989 0.9846 - 0.9362 
4.0 0.9996 0.9917 - 0.9750 
4.5 0.9999 0.9956 - 0.9988 
5.0 1~0000 0.9978 - 1.0125 
5.5 - 0.9990 - 1.0196 
6-0 - 0,9999 - 1.0222 

TABLE 5. f:, f; and 9; for a = 1. 

for some constants C, and D,. So we can remove the term O(7) by adding a suitably 
chosen complementary function to  a particular integral but we then still have 
f k  --f constant as? --f 00 and cannot expect this constant to  be equal to  A,. Equation (24) 
has been solved in this way by writing f, = A:$,; then q5:(0) = -0.3807 and 
q5; -+ - 1.0222 so that fk - A, -+ B,, where B, = - (A, + 1.022283. Values of q5; are 
given in table 5 .  

Again (6) must be regarded as only an inner expansion and we need an outer expan- 
sion which must match with i t  and satisfy the outer boundary condition. To do this we 
find that (6) has to be modified to  

where f o ,  fl and f 2  are as before and 

g1i'-4f6g0 = 0, (26) 

g:-4f,"gn= (2n-1)(f,"gn-l-f6g&l) for n =  1 , 2 , 3  ,.... (27) 

The only boundary conditions prescribed are gn(0) = gA(0) = 0. To integrate (26) 
numerically we need to  know g:(O). Now for large q, gk - C o ~  +Do for certain constants 
Co and Do. Co is fixed by the matching process and this in turn determines Do and gi(0). 
For, if we integrate (26) with gi(0) = 1, we find g; N C,*T +DO*, where C,* = 2.3263 and 
D,* = - 2.1810. We then have to  take gi(0) = Co/C,* and the solution of (26) is deter- 
mined uniquely. 
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From (27) we find that, for large 7, 

g; N - i$C0y3 - &Do?, + C,q + D,, (28) 

9; N & C 0 7 5 + ~ D 0 7 4 - ~ C , 7 3 - ~ D 1 7 2 + C 2 7 +  D,, (29) 

(30) N -&C07' -&Do v6 + ifC,+ QDl r4 - :C273- 3D,72+C37 + D, 

for some constants C,, D,, C,, D,, C3 and D,. Now with U ( z )  = A,( 1 - z)-I, ( 1 )  gives 

P(z) = -2(1 -z)2log(1 -")/A,, 

which suggests using 5 = ( iAo) t  y/t( - log.$ as the independent variable for the outer 
region. We thus put @ = U([)y+ (2Ao)4i3 -log[)*Y((,<), so that  ( 3 )  becomes 

with aY/ac 4 0 as 6 -+ co. From (28), (20) and (30) the behaviour of Y for small 5 is 

which suggests expanding Y in the form 
Y,K) 

y(59 6) = y o ( 5 )  + Z1 ( - log [)an * 

The equation for YP, is 

with solution 
Y ~ + Y Y ~ + n Y ~ = O  ( n = O , 1 , 2  ,... ), 

'€"; = M,erfc (c/24), Y;+, = M,YA 

(33) 

(34) 

(35) 

for some constants M,. Now for small 6, 

but from (32 )  

from which it follows that  C, = -B,(2/n)*.  Matching (35) with (32) gives MI = Do, 
Mz = C, and M3 = D,. Do is fixed once Go is, but C,, D,, ... are still arbitrary. For 
U ( x )  = (1  - z)-l, when A ,  = A ,  = 0, we have C, = Do = 0 but (25) will still include 

Y; = ~ , [ 1 - ( 2 / + ( 5 - 9 5 3 +  ...)I 

Y;  = B2+C0(c-+c3+ ...), 

the terms 

which can each be determined only to within an arbitrary multiple and which arise 
from the asymptotic nature of the solution (Stewartson 1957). 
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Finally we need to check that n takes only integer values in (25). If we include a 
term E2gm(q)/(  - log()" for any m, then gg - 4f i g n 8  = 0 and for large q, gk - C,r/ + D,, 
so that (33) would have to be modified to include the terms 

y",-+(C)/( - logE)""-d + Yrn(C)/( - log5)". 

Ynt+ and Ym both satisfy (32) with n = 2m - 1 and n = Zm, respectively, and 
Y,-+ = C,C and YP, = D, for small 5. Equation (34) can be solved in terms of con- 
fluent hypergeometric functions (Jeffreys & Jeffreys 1962, chap. 2 3 ) ,  from which it 
follows that 

Yk-+ = C,Cexp ( -  i C 2 )  &(&(I  - 2m);  #; &<2), 

= Dzexp ( - i C 2 )  &(&(I - 2 m ) ;  &; i 6 2 ) .  

Neither of these is exponentially small for large 5 unless the series terminates. This 
happens when wz = +, $,$, . . . , which corresponds to n being an integer. 

I should like to thank Dr D. B. Ingham for his helpful and constructive advice with 
this paper. 
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